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1. Introduction

In [1], Cayley solves the quaternion equation
Q' = qQ,

where q and ¢’ are given quaternions over R. Here, we address a similar problem, but in the subring H of Hurwitz’s integral
quaternions, whose definition and important properties are defined in Section 1.1 below. Let & be a primitive quaternion in
H whose norm is divisible by the positive integer m. Does « have any common left- and right-hand factors of norm m? That
is, do there exist 8, y, and y’ in H such that [8] = m and

a=pBy=yp?
This problem is a special case of the “metacommutation problem” for H, which asks generally for relationships between
the many different factorizations of a given integral quaternion. The theorem at the end of Section 2 provides necessary

and sufficient conditions for the existence of common left- and right-hand norm-m factors of « when m is odd. Subsequent
theorems in Section 3 characterize the non-trivial sets of common left- and right-hand factors of «.

1.1. Basic properties of H

Hamilton’s algebra of quaternions, H, is the 4-dimensional composition algebra over R for the Euclidean norm.
Multiplication in H is associative but not commutative, and it satisfies the composition law. Following the notation in [2],
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we denote the inner product of two elements «, 8 in H by [«, 8] and write the norm [«] as an abbreviation for [«, «], so
that the composition law is written as

[aB] = [«][B]

for all «, B. Other basic properties of H follow directly from this law (see pages 68-69 of [2] for proofs). Defining an
involutionary conjugation map by @ = 2[«, 1] — «, we have for all ¢, g8, y in H the “scaling laws”

[aB,ayl=IlallB,v] [aB,yB]=Ila, BlIAI
the “braid laws”

[B.@y]=1lap,y]= o, yBl,
and other conjugation laws such as

af =pa  wo =ad = |l

For coordinates, every element « in H can be written as a linear combination of an orthonormal basis {1, i, j, k}, with
multiplication determined by i# = j% = k* = ijk = —1.
H contains two natural subrings of integers,

L={a+bi+c+dk|ab,c,deZ}

and
. . 1
H:<a+bl+q+dk|a,b,c,deZora,b,c,deZ+§},

that are geometrically similar to the 4-dimensional lattices I, and Dy, respectively [3], scaled so that the norms of vectors
are integral and the smallest non-zero vectors have norm 1. The ring H was first studied by Hurwitz in [4]; it contains L,
studied by Lipschitz. Of the two, only the Hurwitzian ring H is a unique factorization domain, a property required for the
main results of Section 3. (The theorem at the end of Section 2 can be adapted to hold in L alone.)

We refer to the group of units in L and H by L* and H*, respectively, finding that

L* = {£1, i, &, £k}

and
o +H1t+itjtk
H* = { &1, +i, &j, £k, — [

so that [L*| = 8 and |H*| = 24. The number of elements in H* whose inner product with 1 equals

1 1
15 5 0, -3 -1
2 2
is
1,8,6,8,1,

the elements having multiplicative order
1,6,4,3,2.

The automorphism group Aut (H) = Aut (L) is a group of order 24, consisting of all maps determined byi — i’ andj — J,
withi" and j’ chosen from {=i, &j, £k} such that [i', 1] = [j’, 1] = [i’, '] = 0.In particular, Aut(H) is transitive on elements
that have the same inner product with 1. For example, each of the 8 units %ﬁik can be taken to w = 71+ﬂ+" under
Aut (H).

Let « € H be primitive, which means that it cannot be expressed as no’ with &’ € Hand n € Z withn > 1. Define

Ln(a) ={B € H| o = By withy € Hand [8] = m}

and
Rn(ae) ={B €H|a =ypBwithy’ € Hand [B] = m}

as the sets of left- and right-hand factors of & with norm m. Our main problem is determining
Lm(e) N Ry ()

for a given o and m|[«].
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2. Existence of odd-norm two-sided divisors

In this section, we provide necessary and sufficient conditions to ensure that a primitive quaternion integer « of odd
norm has a common left and right divisor. We refer to an element of H that is also in L as being of type (I), and otherwise
being of type (II). If & = ag + a;i 4 ayj + ask, we set a; = q; if o has type (I), and a; = 2q; if & has type (1I); and we define b;
for B = by + byi + byj + bsk similarly. For instance,

1 n 3. n 1. 5k
a=-+4+-i+—-j— =
2 2 2] 2
is of type (II) with norm [@] =9, a; = 3/2,and a} = 3.
Theorem 1. Suppose @ € H is primitive, and let m be an odd integer such that m|[«]. Then
Ln(o) NRp() # 9
if and only if there exists a B € H such that [8] = m and a;b; = a;b; (mod m) for all i # j.

It is essential that m be odd in this proof. For example, let @ = 2i+j+k,sothata = By = y'Bfor B = 1+i,y = 1+i+j,

and y’ = 1+i+k.Butthenay = b, = 0and a, = by = 1, so that ayb), # ayb; (mod 2). We do not understand the behavior
of even-norm divisors.

Proof. If we assume that L, (@) N Ry, () # @, then there exist integral quaternions g, ¥, and y’ such that [8] = m and
o = By = y'B.Therefore y’ = By B! must be integral, and we now compute its coordinates. First, see that

— 1 1
ly . U=y " 11=[By. 18 1= —IBy. Bl = —IBlly. 1l =y, 1],
Y ByB By.1p T By.B T Blly Y
which implies that y and y’ are both of type (I) or both of type (II). Next, we compute
1
y.il=[ByB ".il=—
Y ByB A1
Since i = —b; + bgi — bsj + byk and Bi = —b; + bgi + bsj — bok, we have i = Bi — 2bsj + 2byk. Thus,

[By,iB].

;s 1 . )
[y, il = E[ﬂy, Bi — 2bsj + 2byk]
1 1
m m
1
= [y,il+ E[a’ —2bsj + 2byk]

1
= [)/, l] + E(—Zazlh + 2(13b2).
Since both y and y’ are of the same type, if y is to be integral it must follow that
2
—(—a2b3 + a3b2) € Z.
m

Since gcd(2, m) = 1, one can check that regardless of the types of & and 8, a,b; = a;b), (mod m). Similar calculations
yield

, . . 2
[y, jl=Ily,jl+ E(_%b] + aibs)
and
, 2
[V ) k] - [V’ k] + E(_a‘lbz + azbl)’

which imply a}b; = a}b} (mod m) and a}b), = a3b} (mod m).
To get the other three conditions of the theorem, we compute

2 — 2
2[y/ il =2[aB ", il = —[apf,il = =(—aghi + a1by — azbs + ashy)
8] m

2 — 2
2ly’,jl =2[aB ™", jl = —IlapB,jl = = (—aob; + azby + a;b; — azby)
[B] m

2 _ 2
2[y’, kl = 2[aB ', kl = —[aB, k] = —(—aohs + azhy — a1by + azb1).
(8] m
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In the final expression of each equation, the numerator of the sum of the final two terms is divisible by m, so the same is
true for the sum of the first two terms, leading to the three conditions
aph, = djby (mod m),  aphy, = dyby (mod m), and ayby = d3by (mod m).
For the other direction of the theorem, suppose we have [#] = m such that a;b; = a;b;(m) for all i # j. We need to show

that 8 divides « on the left and right, which is the same as showing that ' = ¢~ ' and y = B~ '« are integral quaternions.
The previously displayed three expressions for 2[y’, i], 2[y’, jl, and 2[y’, k|, together with the assumptions agb]f =

a]’-blf(m), show that each of [y, i], [y, jl, and [y’, k] is in (%)Z, since the four corresponding terms a;b; are in (%)Z. Moreover,
if one of the four terms a;b; is not in (%)Z, then none of these evenly-many terms are. Either way, we find that each of [y, i],
[y’,jl,and [y’, k] is in fact in (%)Z. We then only need to see that the equation

W AP+ i+ 0P+ 1y kP =1y1ez
implies that [y, 1] € (%)Z, with all of [y/, 11, [y, il, [y’,jl,and [y, k] in Z or all in Z + % We conclude that y’ is integral,
and a similar calculation shows that y is integral. O

3. Characterizing the intersection sets

Let o € H be primitive and let m be odd. To characterize the different possibilities for
Lin(@) N R (),

we translate the problem into a similar one regarding units.
By unique factorization in H, if« = By = y’B, then

a=pu-uly =yv" 0,

for arbitrary units u, v, give all 2-term factorizations of @ with one factor having norm [A]. Thus, if A,(8) and A;(B) are,
respectively, the sets of right and left associates of g, then

Lin(e) VR () = Ar(B) NAI(B),

an equality that does not necessarily hold if « is not primitive.
For any ¢ € H, define

U(y) = {u | uyr = v for some v € H*}

and
U-(¥) = {v | uy = v for some u € H*}.

Since multiplication by S is an orthogonal transformation up to scaling, we conclude that
Lin() N R () = Ar(B) NAI(B) ~ Ui(B) ~ Ur(B),

where ~ denotes geometrical similarity.
As a simple example corresponding to the conditions in Theorem 2, @ = 1 + 5i 4+ 2j + 5k has norm [«] = 55. If we set
m = 5, we find that

Ls(a) NRs () = {£(1 +2j), £(2 —j)}
and
U(B) = Uy (B) = {£1, &j},

which are geometrically similar sets of pairs of orthogonal vectors.
Several things can be said about U;(v) (and similarly about U, (¥)).

Lemma 1. If ¢ € H, then U;(y) is a subgroup of H* of order 2, 4, 6, or 24.

Proof. H* is finite, and U;(y) is closed since uyy = v and v’y = v’ imply uu'vy = uyrv’ = Yvv’, proving that U;(v) is
a subgroup of H*. Since the order of H* is 24 and the elements of U;(1/) come in =+ pairs, the possible orders for U;(y) are 2,
4, 6, 8, 12, and 24. But H* does not have a subgroup of order 12. Also, the Lipschitzian units are the unique subgroup of H*
of order 8, so if 1Y = ¥ 1,iY = Yuq,jy = Yuy, and kyy = yus, then

1 1
5(1 +i+j+ kY = wz(l +uy + uy + u3),

with %(1 + uy 4+ up 4+ u3) € H*, so order 8 is not a possibility. O
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Lemma 4, which characterizes the i giving each possible order for U;(1/), makes use of the following two lemmas. For
conjugation € ~'ye, we write €.
Lemma 2. U;(y) = U;(yru) forany u € H*
Proof. Ifu'yy = v/, thenu'yyu = Y v'u = Yuv forsome v € H*; and if u'yyu = Yuv, thenv'vy = v'yuu™! = yuvu~!. O
Lemma 3. Let Yy € Hand u, § € H* withu # %1. Then uy = u® if and only if ' is a linear combination of § and us.

Proof. Consider a basis {1, u, 81, B2} of Hsuch that [8;, 1] = [B;, u] = 0.Then {§, us, 818, B28} is also a basis, so there exist
real numbers a, b, c1, and ¢ such that

Y =ad + bud + c1 816 + c2826.
Thus,
uy = aud + bu’s + u(c1818 + c2826),
and
lﬁu‘S = aus + bu*s + c181ud + c2foud
= aud + bu*s + bus + c1uB18 + c21UB28
= aud + bu*s + (¢, $18 + C2528),

the latter calculation using the fact that if [8;, 1] = [8;, u] = 0, then Sju = iB;. These expressions for uy and vu’ are equal
if and only if

u(c118 + €228) = u(c1$18 + c2529),
which is only true for non real u precisely when
1818 + 2828 = 0.
Since {1, u, B1, B2} is a basis, this is equivalent to saying that ¢ = aé + bué. O

We are now in a position to provide necessary and sufficient conditions on the size of |U;(y)|. The proof briefly makes
use of the cosets of D, in Dj; for a fuller discussion, see page 62 of [2].

Lemma4. Let Yy € H have [Y] odd, and let u,, u, € H* and a, b € Z. Then

1. |Ui(¥)| = 4ifand only if = auq + buy with [uy,u;] = 0anda # 0 # b;
2. |Ui(yr)| = 6ifand only if = auq + buy with [uy, uy] = %anda #0=#b;
3. [U(Y)| = 24 ifand only if v = au,.

Proof. Suppose that uyy = v foru, v € H*. Since [v] is odd, u and v map to the same coset of D, in D}, which implies that
v = u® for some § € H*.Ifu # +1, then Lemma 3 implies that 1/ = a8 + bus for some a, b € R (and in fact a, b € Z).

With this in mind, we prove the forward implication in each of the three cases. If |U;j(4/)| = 4, then up to Aut(H),
Ui(y) = {1, %i}. Since i # +1 and iyy = i for some § € H*, we have

Y = ad + bis = auq + bu,

with [uq, up] = [§, i8] = [1, i][§] = 0. Similarly, if |U;(1)| = 6, then up to Aut (H), Uj(¢y) = {£1, w, £o}. Since w # *+1
and oy = Yo’ for some § € H*, we have

Y = ad + bwé = au; + bu,

with [u1, up] = 1. Finally, if |Uj(/)| = 24, then U;(¥) = H*, and so
Y = ad + bis = d'§’ + b'js’

for some 8,8 € H* and a, b, d’, b’ € Z. But this implies
(a + bi)s = (d' + bj)8’

and so

(a — bi)(d + bj) =8(8) " € H,

aZ + bZ
which in view of aa’ — ba’i + ab’j — bb’k = (a — bi)(a’ + b’j) is only possible for odd [v/] if one of a, b and one of @', b’ are

equal to 0.
For the reverse implications, we proceed as follows. If ¢ = au; + bu, with [uy, u;] = 0, then 1/fu;1 =a+ buzuf1 with

[uzufl, 1] = 0. By Lemma 2, |U;(¥)| = |U1(1/fu(1)|, and up to Aut(H) we may assume that uzu(1 = i, SO we may assume
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that ¢ = a + bi. Obviously, £1, i € U;(v), and if U;(y) contains any other units then U;(¢) = H* by Lemma 1. But it can

be checked that, for example, j(a + bi) # (a + bi)u for any u € H*, using the facts that a # 0 # b and [¢/] is odd.

Similarly, if ¥ = au; + bu, with [uy, u] = 1, then Yu;' = a + bupu; ' with [upu; ', 1] = 1. Up to Aut(H) we may

assume that uzuf1 = —w, and so Y = a + b(—w). Obviously, 1, +w, +w € U;(¥), and if U;(y/) contains any other units
then U;(y) = H* by Lemma 1. But it can be checked that, for example, i(a + b(—w)) # (a + b(—w))u for any u € H*,
Finally, if ¢ = au,, then U;(¢/) = H* since v is just an integer multiple of an element of H*. [

Our final lemma shows that |L,, (1) N Ry, (¢)| is invariant up to associates.
Lemma 5. For any u € H*,

L (¥) VR ()| = L (ur) N Ry ()| = [Lin (Y1) O R (Y.

Proof. If 8 € Ly,(¥) N Ry(v), then there exist integral quaternions y, y’ such that v = By = y’B. Multiplying
on the left by u, we see that uyy = upfy = uy’u"'uf which clearly implies that up € Ln(uy) N Ry(uy), and
$0 [Ln(¥) N Ru(¥)] < |Lm(uy) N Ry(uyr)|. Repeat this argument by multiplying uy on the left by u~' to see that
|L(uyr) N Ry (up)| < |Lin(¥) N Ry(3f)]. A similar argument establishes the result for right associates. 0O

We now prove the two theorems that characterize the sizes of intersection sets. Recall the definition of a; given at the
beginning of Section 2.

Theorem 2. Let @ € H be primitive and let m be an odd integer. Then |L,,(«) N Ry (e)| = 4 if and only if

o = ag + aqi + aj + ask,
up to multiplication by units and Aut (H), with @, = a3 = 0 (mod m) and the existence of integers a, b relatively prime to m such
that a*> + b*> = mand ayb = d,a (mod m).

Proof. If [, () N Ry(a)| = 4, then there exist integral quaternions B, ¥, and y’ witha = By = y’B with [8] = m. From
the discussion at the beginning of this section,

Lin(et) MR (et) ~ Ui(B).

so by Lemma 4, 8 = au; + bu, for integers a, b and integral quaternion units us, u, such that [8] = a* + b> = m and
[ui, u21 = 0.
By Lemma 2 (using u = u;l), we may assume that u; = 1, and then by Aut(H) that u, = i, so 8 = a + bi. Theorem 1

then implies the congruences

ayb = dja (mod m)

a,0 = aya (mod m)

a,0 = dja (mod m).
To conclude that a, = a3 = 0, it is enough to know that (a, m) = 1.Butif (a, m) = d > 1, then a®> + b> = m implies that
(b, m) = d, so that d|8, which contradicts the primitivity of «.

For the other direction, let 8 = a + bi with the given conditions on a and b. The six congruences of Theorem 1 are then
satisfied, so @ = By = y’g for integral quaternions y, y’. By Lemma 4,

ILm (@) N Ry ()| = [Ui(B)| = 4. O

Theorem 3. Let o be a primitive integral quaternion and m an odd integer. Then |L,,(«) N Ry, ()| = 6 if and only if
o = ag + a,i + ayj + ask,

up to multiplication by units and Aut (H), with a; = d, = a} (mod m) and the existence of integers a, b relatively prime to m
such that a* + ab + b* = mand ayb = d,(2a + b) (mod m).

Proof. If |[L,,(a) N Ry ()| = 6, then there exist integral quaternions 8, y, and Yy’ witha = By = ¥’B and [8] = m. From
the discussion at the beginning of this section,

Lin(et) MR (et) ~ Ui(B).

so by Lemma 4, 8 = au, + bus, for integers a, b and integral quaternion units u4, u, such that [8] = a* +ab+ b?> = mand
[ur, uz] = %

By Lemma 2 (using u = uf ), we may assume that u; = 1, and then by Aut (H) that u, = —w, so

B =a+b(—w) = %((Za—i-b) — bi— bj — bk).
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Theorem 1 then implies the congruences

ayb = d;(2a + b) (mod m)

a}b = d,b (mod m)

aib = a;b (mod m).
If (a,m) = d > 1, then a*> + ab + b*> = m implies that (b, m) = d, so that d|8 and thus d|o, contradicting the primitivity
of w. So we may assume that (a, m) = (b, m) = 1, which implies that the last three congruences above are equivalent to
a) = a, = dy(m).

For the other direction, let 8 = a + b(—w) = %((Za + b) — bi — bj — bk) with the given conditions on a and b. The six

congruences of Theorem 1 are then satisfied, so@ = By = y’g for integral quaternions y, y’. By Lemma 4,

ILm () O R ()| = [UI(B)| = 6. O
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